AEROSPACE PROPULSION - I

V Semester									
Course Code		Category	Hours / Week			Credits	Maximum Marks		
A5AE20		PCC	L	Т	Ρ	С	CIE	SEE	Total
			3	0	0	3	30	70	100
COURSE OBJECTIVES:									
 The course is intended to build up necessary background for understanding the basics of propulsion. 1. To understand the application of various experimental fluid mechanics correlations in propulsion. 2. To understand the basic concepts of compressible fluid flow 									
UNIT-I	FUNDAMENTALS OF GAS TURBINE								
Introduction-Working Of Gas Turbine Engines- P-v and T-s Diagram, Characteristics of Turboprop, Turbojet, Turbofan, Ramjet, Scramjet, Advantages, Disadvantages, Thrust Equation, Installed and Uninstalled- thrust, TSFC, SFC, Mass Flow rate Numerical Problems									
UNIT-II	INLETS & NOZZLES								
Subsonic Inlets: Flow Characteristics, Governing Equations of Inlets, Stall in Subsonic inlets, Relation between minimum area ratio and external deceleration ratio. Diffuser performance. Supersonic Inlets Nozzles: Nozzle Types, Area-Mach relationship and Nozzle Throat Conditions. Nozzle Efficiency, Losses In Nozzles. Nozzle Expansion Process Ejector And Variable Area Nozzles, Thrust Reversal, Thrust Vectoring, Noise reduction methods.									
UNIT-III	COMPRESSORS								
Axial Flow Compressors: Elementary theory of axial flow compressor, Velocity triangles, Degree of reaction. Flow through an Axial flow Compressor stage; Losses in axial flow compressor stage; Compressor blade design, Stage losses, Characteristics of Blade - single and multi-stage Axial compressor, Characteristics of HPC,LPC. Design Pressure & Velocity compounding (Curtis &Rateau Staging)									
UNIT-IV	COMBUSTION CHAMBER, BURNERS AND PERFORMANCE								
Classification of combustion chambers – Important factors affecting combustion chamber design – Combustion process – Combustion chamber performance – Effect of operating variables on performance – Flame tube cooling – Flame stabilization – Use of flame holders – After Burner-Numerical problems.									
UNIT-V	TURBINES								
Axial Flow Turbines: Introduction; Turbine stage; Turbine Blade 2-D (cascade) analysis Work Done; Degree of Reaction; Losses and Efficiency; Flow Passage; Subsonic, transonic and supersonic turbines, Multi-staging of Turbine, Turbine Cooling; Turbine Blade design & Profiles, Airfoil Data and Profile construction. Radial Turbine: Introduction, Thermodynamics and Aerodynamics of radial turbines; Radial Turbine Characteristics; Losses and efficiency									
Text Books:									
 Elements of Gas Turbine Propulsion, Mattingly,: TMCH V. Ganesan (2010), Gas Turbines, Tata McGraw-Hill, New Delhi, India. 									
Reference Books:									

- 1. Gas Turbines and Jet & Rocket Propulsion, Mathur, M.L.
- 2. H. I. H. Saravanamuttoo, Cohen H. Rogers (2009), Gas Turbine Theory, 6th edition, Pearson Education, New Delhi, India.
- 3. Ahmed F EL Sayed 2008 Aircraft Propulsion and Gas Turbine EnginesII, CRC Press LLC
- 4. Royce (2005), Jet Engine, 6th edition, Rolls Royce Ltd, USA.

COURSE OUTCOMES:

- Analyze principles of various engines and thermodynamic cycles
 Analyze the characteristics and performance of various types of jet engines
- 3. Examine the various types of inlets and principle of axial flow compressors
- 4. Evaluate the performance of combustion chamber
- 5. Analyze the characteristics of turbine and nozzles